How do you find the antiderivative of int (xarctanx) dx?

How do you find the antiderivative : int (xarctanx) dx?

1 Answer
Sep 12, 2017

1/2{(x^2+1)arc tanx-x}+C.

Explanation:

Suppose that, I=intx arc tanxdx.

We will use the following Method of Integration by Parts (IBP) :

IBP :intu*vdx=uintvdx-int((du)/dxintvdx)dx.

We take, u=arc tanx, and, v=x.

:. (du)/dx=1/(x^2+1), and, intvdx=x^2/2.

Therefore, by IBP, we have,

I=x^2/2*arc tanx-int{x^2/2*1/(x^2+1)}dx,

=x^2/2*arc tanx-1/2intx^2/(x^2+1)dx,

=x^2/2*arc tanx-1/2int{(x^2+1)-1}/(x^2+1)dx,

=x^2/2*arc tanx-1/2int{(x^2+1)/(x^2+1)-1/(x^2+1)}dx,

=x^2/2*arc tanx-1/2{int1dx-int1/(x^2+1)dx},

=x^2/2*arc tanx-1/2{x-arc tanx}.

rArr I=1/2{(x^2+1)arc tanx-x}+C.

Enjoy Maths.!