How do you find the area bounded by the cardioid r=1+cos(θ)?

1 Answer
Mar 27, 2016

A=(cosx+4)sinx+3x4
enter image source here

Explanation:

Given: r=1+cos(θ)
Required: Area of cardioid?
Solution Strategy: Polar Coordinate Area Integral
A=θ2θ112r2d(θ) substitute for r
A=12θ2θ1(1+cos(θ))2d(θ)
=12[(1+2cosθ+cos2θ)d(θ)]
=12[θ+2sinθ+cos2θd(θ)]
I3=cos2θd(θ) apply reduction formula
I3=n1ncosn2θd(θ)+cosn1θsinθn
I3=12θ+cosθsinθ2
Putting it all together:

A=(cosx+4)sinx+3x4