How do you find the area of a parallelogram with vertices?

2 Answers
Feb 14, 2016

For parallelogram ABCDABCD the area is
S = |(x_B-x_A)*(y_D-y_A)-(y_B-y_A)*(x_D-x_A)|S=|(xBxA)(yDyA)(yByA)(xDxA)|

Explanation:

Let's assume that our parallelogram ABCDABCD is defined by the coordinates of its four vertices - [x_A,y_A][xA,yA], [x_B,y_B][xB,yB], [x_C,y_C][xC,yC], [x_D,y_D][xD,yD].

To determine the area of our parallelogram, we need the length of its base |AB||AB| and the altitude |DH||DH| from vertex DD to point HH on side ABAB (that is, DH_|_ABDHAB).

First of all, to simplify the task, let's move it to a position when its vertex AA coincides with the origin of coordinates. The area will be the same, but calculations will be easier.
So, we will perform the following transformation of coordinates:
U=x-x_AU=xxA
V=y-y_AV=yyA

Then the (U,VU,V) coordinates of all vertices will be:
A[U_A=0,V_B=0]A[UA=0,VB=0]
B[U_B=x_B-x_A,V_B=y_B-y_A]B[UB=xBxA,VB=yByA]
C[U_C=x_C-x_A,V_C=y_C-y_A]C[UC=xCxA,VC=yCyA]
D[U_D=x_D-x_A,V_D=y_D-y_A]D[UD=xDxA,VD=yDyA]

Our parallelogram now is defined by two vectors:
p=(U_B,V_B)p=(UB,VB) and q=(U_D,V_D)q=(UD,VD)

Determine the length of base ABAB as the length of vector pp:
|AB|=sqrt(U_B^2+V_B^2)|AB|=U2B+V2B

The length of altitude |DH||DH| can be expressed as |AD|*sin(/_BAD)|AD|sin(BAD).
The length ADAD is the length of vector qq:
|AD|=sqrt(U_D^2+V_D^2)|AD|=U2D+V2D
Angle /_BADBAD can be determined by using two expressions for the scalar (dot) product of vectors pp and qq:
(p*q)=U_B*U_D+V_B*V_D=|p|*|q|*cos(/_BAD)(pq)=UBUD+VBVD=|p||q|cos(BAD)
from which
cos^2(/_BAD)=(U_B*U_D+V_B*V_D)^2/[(U_B^2+V_B^2)*(U_D^2+V_D^2)]cos2(BAD)=(UBUD+VBVD)2(U2B+V2B)(U2D+V2D)
sin^2(/_BAD)=1-cos^2(/_BAD)=sin2(BAD)=1cos2(BAD)=
=1-(U_B*U_D+V_B*V_D)^2/[(U_B^2+V_B^2)*(U_D^2+V_D^2)]==1(UBUD+VBVD)2(U2B+V2B)(U2D+V2D)=
=(U_B*V_D-V_B*U_D)^2 / [(U_B^2+V_B^2)*(U_D^2+V_D^2)]=(UBVDVBUD)2(U2B+V2B)(U2D+V2D)

Now we know all components to calculate the area:
Base |AB|=sqrt(U_B^2+V_B^2)|AB|=U2B+V2B:
Altitude |DH|=sqrt(U_D^2+V_D^2)*|U_A*V_D-V_A*U_D| / sqrt[(U_B^2+V_B^2)*(U_D^2+V_D^2)]|DH|=U2D+V2D|UAVDVAUD|(U2B+V2B)(U2D+V2D)

The area is their product:
S = |AB|*|DH|=|U_B*V_D-V_B*U_D|S=|AB||DH|=|UBVDVBUD|

In terms of original coordinates, it looks like this:
S = |(x_B-x_A)*(y_D-y_A)-(y_B-y_A)*(x_D-x_A)|S=|(xBxA)(yDyA)(yByA)(xDxA)|

Mar 4, 2016

another discussion

Explanation:

Geometric proof
Considering the figure
enter image source here

we can easily establish the formula for calculation of the area of a parallelogram ABCD, when any three vertices (say A,B,D) are known.

Since diagonal BD bisects the parallelogram into two congruent triangle.
The area of the parallelogram ABCD
= 2 area of triangle ABD
=2[ area of trapezium BAPQ +area of trap BQRD - area of trap DAPR]
=2[1/2(AP+BQ)PQ+1/2(BQ+DR)QR-1/2(AP+DR)PR]12(AP+BQ)PQ+12(BQ+DR)QR12(AP+DR)PR]
= (Y_A+Y_B)(X_B-X_A )+(Y_B+Y_D)(X_D-X_B)-(Y_A+Y_D)(X_D-X_A)(YA+YB)(XBXA)+(YB+YD)(XDXB)(YA+YD)(XDXA)
=Y_AX_B+cancel (Y_BX_B)-cancel(Y_AX_A)-Y_BX_A +Y_BX_D+cancel(Y_DX_D)-cancel(Y_BX_B)-Y_AX_D-cancel(Y_DX_D)+cancel(Y_AX_A)+Y_DX_A

=Y_A(X_B_X_D)+Y_B(X_D-XA)+Y_D(X_A-X_B)

This formula will give the area of the parallelogram .
Proof considering vector
It can also be established considering vec(AB) and vec(AD)
Now
Position vector of point A w.r,t the origin O, vec(OA)= X_Ahati +Y_Ahatj
Position vector of point B w.r,t the origin O, vec(OB)= X_Bhati +Y_Bhatj
Position vector of point D w.r,t the origin O, vec(OD)= X_Dhati +Y_Dhatj

Now
Area of the Parallelogram ABCD
= Base (AD)*Height (BE)=AD*h
=AD*ABsintheta=|vec(AD)Xvec(AB)|

Again
vec(AD)=vec(OD)-vec(OA)=(X_D-X_A)hati+(Y_D-Y_A)hatj
vec(AB)=vec(OB)-vec(OA)=(X_B-X_A)hati+(Y_B-Y_A)hatj
vec(AD)Xvec(AB)=[(X_D-X_A)(Y_B-Y_A)-(X_B-X_A)(Y_D-Y_A)]hatk
Area = |vec(AD)Xvec(AB)|
= |Y_BX_D-Y_BX_A-Y_AX_D+cancel(Y_AX_A)-Y_DX_B +Y_DX_A+Y_AX_B-cancel(Y_AX_A)|
= |Y_BX_D-Y_BX_A-Y_AX_D-Y_DX_B +Y_DX_A+Y_AX_B|
= |Y_BX_D-Y_BX_A-Y_AX_D-Y_DX_B +Y_DX_A+Y_AX_B|
=|Y_A(X_B_X_D)+Y_B(X_D-XA)+Y_D(X_A-X_B)|
Thus we have the same formula