How do you find the area of circle using integrals in calculus?

1 Answer
Sep 8, 2014

By using polar coordinates, the area of a circle centered at the origin with radius RR can be expressed:
A=int_0^{2pi}int_0^R rdrd theta=piR^2A=2π0R0rdrdθ=πR2

Let us evaluate the integral,
A=int_0^{2pi}int_0^R rdrd thetaA=2π0R0rdrdθ
by evaluating the inner integral,
=int_0^{2pi}[{r^2}/2]_0^R d theta=int_0^{2pi}R^2/2 d theta=2π0[r22]R0dθ=2π0R22dθ
by kicking the constant R^2/2R22 out of the integral,
R^2/2int_0^{2pi} d theta=R^2/2[theta]_0^{2pi}=R^2/2 cdot 2pi=piR^2R222π0dθ=R22[θ]2π0=R222π=πR2