How do you find the area of the region bounded by the polar curve r=2-sin(theta) ?

1 Answer
Sep 17, 2014

The polar curve r=2-sin theta, 0 le theta < 2pi looks like this.

enter image source here

we can find the area A of the enclosed region can be found by

A=int_0^{2pi}\int_0^{2-sin theta}r dr d theta={9pi}/2

Let us evaluate the double integral above.

A=int_0^{2pi}\int_0^{2-sin theta}r dr d theta

=int_0^{2pi}[r^2/2]_0^{2-sin theta} d theta

=1/2int_0^{2pi}(2-sin theta)^2 d theta

=1/2int_0^{2pi}(4-4sin theta+ sin^2 theta) d theta

by sin^2 theta=1/2(1-cos 2theta),

=1/2int_0^{2pi}(9/2-4sin theta-1/2cos2theta)d theta

=1/2[9/2theta+4cos theta-1/4sin2theta]_0^{2pi}

=1/2[9pi+4-0-(0+4-0)]={9pi}/2