How do you find the axis of symmetry, graph and find the maximum or minimum value of the function #y = 2x^2 - 4x -3#?

1 Answer

Axis of symmetry#color(blue)(" "x=1)#
Minimum value of the function #color(blue)(=-5)#
See the explanation for the graph

Explanation:

The solution:

To find the Axis of symmetry you need to solve for the Vertex #(h, k)#

Formula for the vertex:
#h=(-b)/(2a)# and #k=c-b^2/(4a)#

From the given #y=2x^2-4x-3#
#a=2# and #b=-4# and #c=-3#

#h=(-b)/(2a)=(-(-4))/(2(2))=1#
#k=c-b^2/(4a)=-3-(-4)^2/(4(2))=-5#

Axis of symmetry:

#x=h#

#color(blue)(x=1)#

Since #a# is positive, the function has a Minimum value and does not have a Maximum.

Minimum value #color(blue)(=k=-5)#

The graph of #y=2x^2-4x-3#
Desmos.com

To draw the graph of #y=2x^2-4x-3#, use the vertex #(h, k)=(1, -5)# and the intercepts.

When #x=0#,
#y=2x^2-4x-3#
#y=2(0)^2-4(0)-3=-3" "#means there is a point at #(0, -3)#

and when #y=0#,
#y=2x^2-4x-3#
#0=2x^2-4x-3#

#x=(-b+-sqrt(b^2-4ac))/(2a)=(-(-4)+-sqrt((-4)^2-4(2)(-3)))/(2(2))#

#x=(+4+-sqrt(16+24))/(4)#

#x=(+4+-sqrt(40))/(4)#

#x=(+4+-2sqrt(10))/(4)#

#x_1=1+1/2sqrt(10)#

#x_2=1-1/2sqrt(10)#

We have two points at #(1+1/2sqrt(10), 0)# and #(1-1/2sqrt(10), 0)#

God bless...I hope the explanation is useful.