How do you find the critical points to graph #sin(3x)#? Trigonometry Graphing Trigonometric Functions Translating Sine and Cosine Functions 1 Answer mizoo Mar 20, 2018 #x = (kpi)/3 + pi/6, k # any integer Explanation: #d/dx sin(3x) = 3cos(3x)# #3cos(3x) = 0# #3x = kpi + pi/2 ,k # any integer #x = (kpi)/3 + pi/6, k # any integer Answer link Related questions How do you graph sine and cosine functions when it is translated? How do you graph #y=sin ( x -frac{\pi}{2} )#? How do you draw a sketch of #y = 1 + cos (x - pi)# How do you shift and graph #y=-3+sinx#? How do you graph #y=3sin(1/3x+ pi/2)-2#? How do you graph #1/2sin(x-pi)#? How do you graph #-sinx+2#? How do you graph #y=3sin(1/2)x#? How do you graph #y=-2cos((pix)/3)#? How do you graph #y = (1/2)sin(x - pi)#? See all questions in Translating Sine and Cosine Functions Impact of this question 2219 views around the world You can reuse this answer Creative Commons License