How do you find the definite integral of (x) / sqrt(4 + 3x) dx x√4+3xdx from [0, 7][0,7]?
1 Answer
Oct 30, 2016
Please see the explanation section below.
Explanation:
Let
This makes
Substitute
= 1/9 int_4^25 (u^(1/2)-4u^(-1/2)) du=19∫254(u12−4u−12)du
= 1/9[2/3u^(3/2) - 8u^(1/2)]_4^25=19[23u32−8u12]254
= 1/9[2/3u^(3/2) - 24/3u^(1/2)]_4^25=19[23u32−243u12]254
= 2/27[sqrtu(u-12)]_4^25=227[√u(u−12)]254
= 2/27[5(13)-2(-8)]=227[5(13)−2(−8)]
= 2/27(65+16) = 2/27(81) = 6=227(65+16)=227(81)=6