How do you find the derivative of f(x)=ax^2?

1 Answer
Jan 9, 2017

d/(dx) (ax^2) = 2ax

Explanation:

This is an application of a basic differentiation rule:

d/(dx) x^n = n*x^(n-1)

In this case:

d/(dx) (ax^2) = a* d/(dx) (x^2) = 2ax

You can also demonstrate it directly considering the formal definition of the derivative of f(x):

f'(x) = lim_(Deltax->0) (f(x+Deltax)-f(x))/(Deltax) = lim_(Deltax->0) (Deltaf)/(Deltax)

Delta f = a(x+Deltax)^2 - ax^2 = ax^2+2axDeltax +a(Deltax)^2-ax^2=2axDeltax +a(Deltax)^2

(Deltaf)/(Deltax) = 2ax +aDeltax

lim_(Deltax->0) (Deltaf)/(Deltax) = lim_(Deltax->0)2ax +aDeltax = 2ax