How do you find the derivative of s=13t3+12t2+t?

1 Answer
Feb 10, 2017

dsdt=t2+t+1

Explanation:

We will use the rules:

  • ddt[f(t)+g(t)]=ddtf(t)+ddtg(t)
  • ddttn=ntn1
  • ddtaf(t)=addtf(t)

Then:

dsdt=13(ddtt3)+12(ddtt2)+ddtt1

dsdt=13(3t2)+12(2t1)+1t0

dsdt=t2+t+1