How do you find the derivative of s=1/3t^3+1/2t^2+ts=13t3+12t2+t?
1 Answer
Feb 10, 2017
Explanation:
We will use the rules:
d/dt[f(t)+g(t)]=d/dtf(t)+d/dtg(t)ddt[f(t)+g(t)]=ddtf(t)+ddtg(t) d/dtt^n=nt^(n-1)ddttn=ntn−1 d/dta*f(t)=a*d/dtf(t)ddta⋅f(t)=a⋅ddtf(t)
Then:
(ds)/dt=1/3(d/dtt^3)+1/2(d/dtt^2)+d/dtt^1dsdt=13(ddtt3)+12(ddtt2)+ddtt1
(ds)/dt=1/3(3t^2)+1/2(2t^1)+1t^0dsdt=13(3t2)+12(2t1)+1t0
(ds)/dt=t^2+t+1dsdt=t2+t+1