How do you find the derivative of s=13t3+12t2+t?
1 Answer
Feb 10, 2017
Explanation:
We will use the rules:
ddt[f(t)+g(t)]=ddtf(t)+ddtg(t) ddttn=ntn−1 ddta⋅f(t)=a⋅ddtf(t)
Then:
dsdt=13(ddtt3)+12(ddtt2)+ddtt1
dsdt=13(3t2)+12(2t1)+1t0
dsdt=t2+t+1