How do you find the dimensions of the rectangle with largest area that can be inscribed in a semicircle of radius rr ?

1 Answer
Aug 12, 2018

The dimensions of the rectangle is sqrt2r2r and r/sqrt2r2

Explanation:

The equation of the semicircle is

x^2+y^2=r^2x2+y2=r2.......................(1)(1)

The area of the rectangle is

A=2xyA=2xy....................(2)(2)

From equation (1)(1), we get

y^2=r^2-x^2y2=r2x2

y=sqrt(r^2-x^2)y=r2x2

Plugging this value in equation (2)(2)

A=2xsqrt(r^2-x^2)A=2xr2x2

Differentiating wrt xx using the product rule

(dA)/dx=2sqrt(r^2-x^2)-2x^2/sqrt(r^2-x^2)dAdx=2r2x22x2r2x2

=(2r^2-2x^2-2x^2)/(sqrt(r^2-x^2))=2r22x22x2r2x2

=(2r^2-4x^2)/(sqrt(r^2-x^2))=2r24x2r2x2

The critical points are when

(dA)/dx=0dAdx=0

That is

(2r^2-4x^2)/(sqrt(r^2-x^2))=02r24x2r2x2=0

r^2=2x^2r2=2x2

x=r/sqrt2x=r2

Then,

y=sqrt(r^2-x^2)=sqrt(r^2-r^2/2)=r/sqrt2y=r2x2=r2r22=r2

The maximum area is

A=2*r/sqrt2*r/sqrt2=r^2A=2r2r2=r2