How do you find the domain and range for y= (x+3)^0.5y=(x+3)0.5?

1 Answer
May 29, 2018

Domain: {x|x>=-3}{xx3} or [-3, oo)[3,)

Range: {y|y>=0}{yy0} or [0, oo)[0,)

Explanation:

y= (x+3)^0.5y=(x+3)0.5

y= (x+3)^(1/2)y=(x+3)12

y= sqrt(x+3)y=x+3

So the domain will be all numbers where the terms under the radical are not negative (otherwise the solution is imaginary).

x+3>=0x+30

x>=-3x3

Domain: {x|x>=-3}{xx3} or [-3, oo)[3,)

Now the range at x=-3; y=0x=3;y=0 but it will always be greater than or equal to 0.

Range: {y|y>=0}{yy0} or [0, oo)[0,)

Here is the graph:

graph{sqrt(x+3) [-6, 14, -1.28, 8.72]}