How do you find the domain and range of root4(9-x^2)?

1 Answer
Aug 1, 2017

Domain : -3 <= x <= 3 or [-3, 3]
Range: 0 <= f(x) <= sqrt3 or [0,sqrt3]

Explanation:

f(x)=root(4) (9-x^2) . For domain under root must be >=0

:. 9-x^2 >= 0 or x^2 <= 9 :. x <= 3 or x>= -3

Domain : -3 <= x <= 3 or [-3, 3]

Range : Minimum value : f(x)=0 when x = +-3 and

maximum value : f(x)=sqrt ((sqrt (9) ) )= sqrt 3 when x = 0

Range: 0 <= f(x) <= sqrt3 or [0,sqrt3]

graph{(9-x^2)^0.25 [-10, 10, -5, 5]} [Ans]