How do you find the domain and range of sqrt(16-x^2)?

1 Answer
Aug 6, 2017

Domain : -4 <= x <= 4 , in interval notation : [-4,4]
Range: 0 <= f(x) <= 4 , in interval notation : [0,4]

Explanation:

f(x) = sqrt ( 16 -x^2) , for domain under root should not be

negative quantity. 16-x^2 >= 0 or 16 >= x^2 or x^2 <=16

:. x <= 4 or x >=-4 . Domain : -4 <= x <= 4 or [-4,4]

Range : f(x) is maximum at x=0 , f(x) = 4 and

f(x) is minimum at x=4 , f(x) = 0

Range : 0 <= f(x) <= 4 or [0,4]

Domain : -4 <= x <= 4 , in interval notation : [-4,4]

Range: 0 <= f(x) <= 4 , in interval notation : [0,4]

graph{(16-x^2)^0.5 [-10, 10, -5, 5]}