How do you find the domain and range of y = 1/(x^2 - 2)?

1 Answer
Nov 6, 2017

Domain: x|oo,-sqrt(2))uu(-sqrt(2),sqrt(2))uu(sqrt(2),oo)
Range: y| (-oo,0)uu(0,oo)

Explanation:

y=1/(x^2-2) = 1/((x+sqrt2)(x-sqrt2)) . Function is undefined

if denominator is zero.So function is undefined at x=sqrt2

and at x=-sqrt2. Domain : Any real number of x except

x=+-sqrt2. Domain: x in RR | x !=+-sqrt2. In interval notation

expressed as x|(-oo , -sqrt(2))uu(-sqrt(2),sqrt(2))uu(sqrt(2),oo).

Range: Any real number of y except y=0

Range: y in RR | y !=0.In interval notation expressed as

y| (-oo,0)uu(0,oo)

graph{1/(x^2-2) [-10, 10, -5, 5]} [Ans]