How do you find the domain and range of y=x^2+1?

1 Answer
Nov 15, 2017

Domain: x in RR or x| (-oo,oo)
Range : y>= 1 or y| [1,oo).

Explanation:

y=x^2+1 , Domain : Possible input value of x is

any real value . Therefore Domain: x in RR or x| (-oo,oo).

Range: y=x^2+1 or y = (x-0)^2+1 . Comparing with vertex

form of equation f(x) = a(x-h)^2+k ; (h,k) being vertex

we find here h=0 , k=1,a=1 :. Vertex is at (0,1)

Since a is positive the parabola opens upward and

vertex is the minimum point x=0, y=1

So range is y>=1 or y| [1,oo).

Domain: x in RR or x| (-oo,oo)

Range : y>= 1 or y| [1,oo).

graph{x^2+1 [-10, 10, -5, 5]}