How do you find the domain for f(q)=(q+1)/(q^2+6q-27)f(q)=q+1q2+6q27?

1 Answer
Jul 5, 2018

The domain is q in (-oo, -9) uu(-9,3)uu(3,+oo)q(,9)(9,3)(3,+)

Explanation:

The denominator is

q^2+6q-27=(q-3)(q+9)q2+6q27=(q3)(q+9)

As the denominator must be !=00

(q-3)(q+9)!=0(q3)(q+9)0

{(q-3!=0),(q+9!=0):}

=>, {(q!=3),(q!=-9):}

The domain is q in (-oo, -9) uu(-9,3)uu(3,+oo)

graph{(x+1)/(x^2+6x-27) [-20.28, 20.26, -10.14, 10.14]}