How do you find the domain of f(x) =1/sqrt(-x^2+5x-4)?

1 Answer
Aug 25, 2017

The domain is x in (1,4)

Explanation:

For the square root and the division, the conditions are

(-x^2+5x-4)>0 and x!=1 and x!=4

Let f(x)=(-x^2+5x-4)=-(x^2-5x+4)=-(x-1)(x-4)

We can build the sign chart

color(white)(aaaa)xcolor(white)(aaaaaaa)-oocolor(white)(aaaaaa)1color(white)(aaaaaaaa)4color(white)(aaaaaa)+oo

color(white)(aaaa)-(x-1)color(white)(aaaaa)+color(white)(aaa)||color(white)(aaa)-color(white)(aaaaaa)-

color(white)(aaaa)(x-4)color(white)(aaaaaaa)-color(white)(aaa)#color(white)(aaaa)-#color(white)(aa)||color(white)(aaa)+

color(white)(aaaa)f(x)color(white)(aaaaaaaaaa)-color(white)(aa)||color(white)(aaa)+color(white)(aa)||color(white)(aaa)-

Therefore,

f(x)>0, when x in (1,4)

graph{1/sqrt(-x^2+5x-4) [-9.55, 18.93, -4.48, 9.76]}