How do you find the domain of f(x)=sqrt((2x^2+5x-3) )?

1 Answer
Jan 5, 2018

D_f=(-oo,-3]uu[1/2,+oo)

Explanation:

f(x)=sqrt(2x^2+5x-3)

D_f={AAxinRR: 2x^2+5x-3>=0}

Let's find the roots of 2x^2+5x-3=0

Δ=b^2-4ac=25-4*2*(-3)=25+24=49

x_(1,2)=(-b+-sqrtΔ)/(2a) = (-5+-sqrt49)/4 = (-5+-7)/4

So

  • x_1=2/4=1/2,
  • x_2=-12/4=-3

For xin(-oo,-3)
for example x=-5 -> 2*(-5)^2+5(-5)-3=50-25-3=22>0

For xin(-3,1/2)
for example x=0 -> 2*0^2+5*0-3=-3<0

For xin(1/2,+oo)
for example x=5 -> 2*(5)^2+5*5-3=50+25-3=72>0

Therefore 2x^2+5x-3>=0 <=> xin(-oo,-3]uu[1/2,+oo)

and D_f=(-oo,-3]uu[1/2,+oo)