How do you find the exact value of 2 cos pi/3 - 6 tan pi/3? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. Jun 19, 2016 1 - 6sqrt31−6√3 Explanation: Trig table --> 2cos (pi/3) = 2(1/2) = 12cos(π3)=2(12)=1 6tan (pi/3) = 6(sqrt3)6tan(π3)=6(√3) Therefor, 2cos (pi/3) - 6tan (pi/3) = 1 - 6sqrt32cos(π3)−6tan(π3)=1−6√3 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ140∘? How do you find the value of cot 300^@cot300∘? What is the value of sin -45^@sin−45∘? How do you find the trigonometric functions of values that are greater than 360^@360∘? How do you use the reference angles to find sin210cos330-tan 135sin210cos330−tan135? How do you know if sin 30 = sin 150sin30=sin150? How do you show that (costheta)(sectheta) = 1(cosθ)(secθ)=1 if theta=pi/4θ=π4? See all questions in Trigonometric Functions of Any Angle Impact of this question 2150 views around the world You can reuse this answer Creative Commons License