How do you find the exact value of 8^(log_8 6-log_8 9)?

1 Answer
Jul 26, 2017

2/3.

Explanation:

Recall that, a^x=b....(1). iff x=log_a b..........(2).

Hence, if we subst. x in (1), we have, a^(log_a b)=b.

Accordingly, 8^(log_8 6)=6, and, 8^(log_8 9)=9.

Therefore, The Reqd. Value=8^{(log_8 6)-(log_8 9)},

={8^(log_8 6)}/{8^(log_8 9)},

=6/9,

=2/3.