How do you find the exact value of arctan(1/2)+arctan(1/3)?

1 Answer
May 14, 2015

Suppose alpha = arctan(1/2) and beta = arctan(1/3)

What is the value of tan(alpha + beta) ?

It's probably easiest to calculate sin alpha, cos alpha, sin beta and cos beta first:

If alpha = arctan(1/2), then 1/2 = tan alpha = sin alpha / cos alpha.

Multiplying through by 2cos alpha we get

cos alpha = 2 sin alpha

Squaring both sides and using sin^2 alpha + cos^2 alpha = 1 we get

4 sin^2 alpha = cos^2 alpha = 1 - sin^2 alpha

Adding sin^2 alpha to both sides and dividing by 5 we get

sin^2 alpha = 1/5

So sin alpha = 1/sqrt(5) and cos alpha = 2 sin alpha = 2/sqrt(5).

Similarly, we can find sin beta = 1/sqrt(10) and cos beta = 3/sqrt(10).

Now we can calculate

tan(alpha + beta) = sin(alpha+beta)/cos(alpha+beta)

=(sin alpha cos beta + sin beta cos alpha)/(cos alpha cos beta - sin alpha sin beta)

The numerator:

sin alpha cos beta + sin beta cos alpha

=(1/sqrt(5))(3/sqrt(10)) + (1/sqrt(10))(2/sqrt(5))

=5/sqrt(50) = 1/sqrt(2)

The denominator:

cos alpha cos beta - sin alpha sin beta

(2/sqrt(5))(3/sqrt(10)) - (1/sqrt(5))(1/sqrt(10))

=5/sqrt(50) = 1/sqrt(2)

So putting these together:

tan(alpha + beta) = (1/sqrt(2))/(1/sqrt(2)) = 1

So alpha + beta = pi/4