How do you find the exact value of arctan(1) + arctan(2) + arctan(3) arctan(1)+arctan(2)+arctan(3)?

1 Answer
Jun 26, 2015

Answer is 0.

Explanation:

arctanx+arctany+arctanz=arctanarctanx+arctany+arctanz=arctan(x+y+z-xyz)/(1-xy-yz-zx)x+y+zxyz1xyyzzx

Let x=11,y=2y=2, z=3z=3

arctan(1)+arctan(2)+arctan(3)=arctan(1)+arctan(2)+arctan(3)=

=arctan=arctan((1)+(2)+(3)-(1*2*3))/(1-(1*2)(2*3)(3*1)(1)+(2)+(3)(123)1(12)(23)(31)

=arctan(0/(-35))=arctan(035)

=arctan(0)=arctan(0)

=arctan(0)=arctan(0)

=arctan(tan0))=arctan(tan0))[from angle table]

=cancel(arctan)cancel(tan)((0))

=0