How do you find the exact value of arctan(tanx)?

1 Answer
Aug 30, 2015

arctan(tanx)=xπx+π2π

which simplifies to

arctan(tanx)=x if x(π2,π2)

Explanation:

If x(π2,π2) then arctan(tanx)=x

Otherwise we need to add some integer multiple of π to x to bring it into this range.

Using the floor function, we can write:

arctan(tanx)=xπx+π2π

Here's a graph of arctan(tan(x)) :

graph{3pi/5(abs(sin(x/2+pi/4))-abs(cos(x/2+pi/4))-1/6(abs(sin(x/2+pi/4)^3))+1/6(abs(cos(x/2+pi/4)^3)))(tan(x/2+pi/4)/abs(tan(x/2+pi/4))) [-5, 5, -2.5, 2.5]}

...