How do you find the exact value of cos^-1(cos(pi/7))cos1(cos(π7))?

1 Answer
Feb 2, 2017

cos^(-1)(cos(pi/7))=pi/7cos1(cos(π7))=π7

Explanation:

As per definition of cos^(-1)cos1, if cosa=xcosa=x, a=cos^(-1)xa=cos1x

In the given problem, let cos(pi/7)=vcos(π7)=v

then as per definition cos^(-1)v=pi/7cos1v=π7 .................(1)

and putting value of v=cos(pi/7)v=cos(π7) in (1), we get

cos^(-1)(cos(pi/7))=pi/7cos1(cos(π7))=π7