How do you find the exact value of cos[2 arcsin (-3/5) - arctan (5/12)]?

2 Answers
Mar 28, 2016

Possible values are +-0.1108 or +-0.6277

Explanation:

arcsin(−3/5)=x means sinx=(-3/5)=-0.6.

As sinx=0.6 for x=36.87^o and sine is negative in third and fourth quadrant, x=180^o+36.87^o or 216.87^o and x=360^o-36.87^o=323.13^o.

arctan(5/12)=x means tanx=(5/12).

As tanx=5/12 for x=22.62^o and tan is positive in first and third quadrant, x=22.62^o or x=180^o +22.62^o.or 202.62^o.

Hence cos{2arcsin(−3/5)-arctan(5/12)]=cos[2xx216.87^o-22.62^o]=cos411.12^o=cos51.12^o=0.6277 or

cos{2arcsin(−3/5)-arctan(5/12)]=cos[2xx216.87^o-202.62^o]=cos411.12^o=cos231.12^o=-0.6277 or

cos{2arcsin(−3/5)-arctan(5/12)]=cos[2xx323.13^o-22.62^o]=cos623.64^o=-0.1108 or

cos{2arcsin(−3/5)-arctan(5/12)]=cos[2xx323.13^o-202.62^o]=cos443.64^o=0.1108

Mar 28, 2016

Values in exactitude are +-12/125 and +-68/125.

Explanation:

Let A = arc sin (-3/5) and B=arc tan (5/12).
Then, sin A = -3/5, cos A = +-4/5.

cos 2A = 1-2 sin^2A=7/25

sin 2A=2 sin A cos A=-24/25 and 24/25, respectively..

Also, tan B=5/12, (sin B =5/13, cos B=12/13) and (sin B =-5/13, cos B=-12/13)

The given expression is

cos(2A-B) = cos 2A cos B+sin 2A sin B

= +-(84+-120)/375.

Note that both sin B and cos B have the same sign + or -.