arcsin(−3/5)=x means sinx=(-3/5)=-0.6.
As sinx=0.6 for x=36.87^o and sine is negative in third and fourth quadrant, x=180^o+36.87^o or 216.87^o and x=360^o-36.87^o=323.13^o.
arctan(5/12)=x means tanx=(5/12).
As tanx=5/12 for x=22.62^o and tan is positive in first and third quadrant, x=22.62^o or x=180^o +22.62^o.or 202.62^o.
Hence cos{2arcsin(−3/5)-arctan(5/12)]=cos[2xx216.87^o-22.62^o]=cos411.12^o=cos51.12^o=0.6277 or
cos{2arcsin(−3/5)-arctan(5/12)]=cos[2xx216.87^o-202.62^o]=cos411.12^o=cos231.12^o=-0.6277 or
cos{2arcsin(−3/5)-arctan(5/12)]=cos[2xx323.13^o-22.62^o]=cos623.64^o=-0.1108 or
cos{2arcsin(−3/5)-arctan(5/12)]=cos[2xx323.13^o-202.62^o]=cos443.64^o=0.1108