How do you find the exact value of #cos ((7pi)/12)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer A. S. Adikesavan May 27, 2016 Exactly # -(sqrt 3-1)/(2sqrt 2) =-0.25882#, nearly Explanation: #cos((7pi)/12)# #=cos(pi/3+pi/4)# #=cos (pi/3) cos (pi/4) - sin ((pi/3) sin (pi/4)# #=(1/2)(1/sqrt 2)-(sqrt 3/2)(1/sqrt 2)# #=-(sqrt 3-1)/(2 sqrt 2)# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 3331 views around the world You can reuse this answer Creative Commons License