How do you find the exact value of cos(arctan (5/2))?

1 Answer

cos (arctan(5/2))=(2sqrt29)/29

Explanation:

Let A be an angle whose tangent=5/2

Let A=arctan(5/2)

Then tan A=5/2

Imagine a right triangle with opposite side a=5 and adjacent side b=2. Compute hypotenuse c

c=sqrt(a^2+b^2)

c=sqrt(5^2+2^2)

c=sqrt29

Then, the cosine function of A

cos A=b/c=2/sqrt29=(2sqrt29)/29

Have a nice day !!! From the Philippines...