How do you find the exact value of cot^-1(cot((2pi)/3))?

2 Answers
Jun 21, 2017

cot^-1(cot ((2pi)/3)) = ((2pi)/3)

Explanation:

Let cot^-1(cot ((2pi)/3)) = theta , then

cot theta = cot ((2pi)/3) :. theta = ((2pi)/3) :.

cot^-1(cot ((2pi)/3)) = ((2pi)/3) [Ans]

Jun 21, 2017

Assuming color(blue)(cot^-1) is defined as a function with a range of color(blue)([0,pi))
then cot^-1(cot((2pi)/3))=color(red)((2pi)/3)