How do you find the exact value of sec((5pi)/12)?

1 Answer
Feb 29, 2016

2/(sqrt(2 - sqrt3)

Explanation:

sec ((5pi)/12) = 1/cos . Find cos ((5pi)/12)
On the trig unit circle,
cos ((5pi)/12) = cos ((6pi)/12 - pi/12) = cos (pi/2 - (pi)/12)=
= sin (pi/12). (complementary arcs)
Find sin (pi/12) by using trig identity:
cos (pi/6) = sqrt3/3 = 1 - 2sin^2 (pi/12)
sin^2 (pi/12) = 1 -sqrt3/2 = (2 - sqrt3)/4
sin (pi/12) = sqrt(2 - sqrt3)/2 --> (sin (pi/12) is positive.
We have:
cos ((5pi)/12) = sin (pi/12) = sqrt(2 - sqrt3)/2
Finally, flip the value of cos.
sec ((5pi)/12) = 2/(sqrt(2 - sqrt3)