How do you find the exact value of sin 105 degrees?

3 Answers
Oct 25, 2015

Find exact value of sin (105)

Ans: (sqrt(2 + sqrt3)/2)(2+32)

Explanation:

sin (105) = sin (15 + 90) = cos 15.
First find (cos 15). Call cos 15 = cos x
Apply the trig identity: cos 2x = 2cos^2 x - 1.cos2x=2cos2x1.
cos 2x = cos (30) = sqrt3/2 = 2cos^2 x - 1=32=2cos2x1
2cos^2 x = 1 + sqrt3/2 = (2 + sqrt3)/2
cos^2 x = (2 + sqrt3)/4
cos x = cos 15 = (sqrt(2 + sqrt3)/2. (since cos 15 is positive)

sin (105) = cos (15) = sqrt(2 + sqrt3)/2.sin(105)=cos(15)=2+32.
Check by calculator.
sin (105) = cos 15 = 0.97
sqrt(2 + sqrt3)/2 = 1.93/2 = 0.97.2+32=1.932=0.97. OK

Feb 10, 2016

Use sin 105 = sin (60 + 45) = sin 60 cos 45 + cos 60 sin 45sin105=sin(60+45)=sin60cos45+cos60sin45
=(sqrt3/2)(1/sqrt2)+(1/2)(1/sqrt2)=sqrt2/4((sqrt3+1)=0.9656=(32)(12)+(12)(12)=24((3+1)=0.9656 nearly.

Explanation:

sin 45, cos 45 and sin 60 are irrational. So, the answer is a surd.

sin105^@=(sqrt6+sqrt2)/4sin105=6+24

Explanation:

We know sin(A+B)=sinAcosB+cosAsinBsin(A+B)=sinAcosB+cosAsinB

Hence sin105^@sin105

= sin(60^@+45^@)sin(60+45)

= sin60^@cos45^@+cos60^@sin45^@sin60cos45+cos60sin45

= sqrt3/2xx1/sqrt2+1/2xx1/sqrt232×12+12×12

= (sqrt3+1)/(2sqrt2)xxsqrt2/sqrt23+122×22

= (sqrt6+sqrt2)/46+24