Use sin (a-b)=sin a cos b - cos a sin b and f f^(-1)(y) = y.sin(a−b)=sinacosb−cosasinbandff−1(y)=y. and, for x in
Q_1Q1, cos x = sqrt(1-sin^2 x) and, likewise, sin x = sqrt( 1-cos^2x)#
The given expression becomes
sin arcsin(1/3)cos sin arc sin (1/4)-cos arc sin (1/3) sin arc arc sin
(1/4)sinarcsin(13)cossinarcsin(14)−cosarcsin(13)sinarcarcsin(14)
=1/3cos arc cos sqrt(1-(1/4)^2)-1/4cos arc cossqrt(1-(1/3)^2)=13cosarccos√1−(14)2−14cosarccos√1−(13)2
=1/3sqrt(1-1/16)-1/4sqrt(1-1/9)=13√1−116−14√1−19
1/12(sqrt15-2sqrt2)112(√15−2√2).