How do you find the exact value of sin(pi/12)sin(pi/4)?

1 Answer
May 20, 2016

sin(pi/12)sin(pi/4)=(sqrt3-1)/4

Explanation:

We know that cos(A+B)=cosAcosB-sinAsinB ..............(1)

and cos(A-B)=cosAcosB+sinAsinB ..............(2)

Now subtracting (2) from (1)

2sinAsinB=cos(A-B)-cos(A+B) or

sinAsinB=1/2cos(A-B)-1/2cos(A+B)

Hence, sin(pi/12)sin(pi/4)=1/2cos((pi/12)-(pi/4))-1/2cos((pi/12)+(pi/4))

= 1/2[cos((pi/12)-((3pi)/12))-cos((pi/12)+((3pi)/12))]

= 1/2[cos(-(2pi)/12)-cos((4pi)/12)]

= 1/2[cos(-pi/6)-cos(pi/3)]=1/2[cos(pi/6)-cos(pi/3)]

= 1/2[sqrt3/2-1/2]=(sqrt3-1)/4