How do you find the exact value of sin(tan^-1 -5/7)sin(tan157)?

1 Answer
Jan 13, 2017

-5/sqrt74574

Explanation:

tan^(-1)(-5/7)= sin^(-1)(-5/sqrt(5^2+7^2))=sin^(-1)(-5/sqrt74)tan1(57)=sin1(552+72)=sin1(574)

The given expression is

sin(sin^(-1)(-5/sqrt74))=-5/sqrt74sin(sin1(574))=574.

Note that , if arc tan is negative, the angle is in Q_4Q4, and so,

arc sin in Q_4arcsinQ4 is also negative.