How do you find the exact value of tan (23pi/6)?

1 Answer
Mar 13, 2018

-1/sqrt3, or, -sqrt3/313,or,33.

Explanation:

tan(23/6pi)=tan{(24-1)/6pi}=tan{(24/6-1/6)pi}tan(236π)=tan{2416π}=tan{(24616)π},

=tan(4pi-pi/6)=tan(4ππ6).

Since, (4pi-pi/6)(4ππ6) lies in the fourth quadrant, where, tan is

-ve, we get,

tan(23/6pi)=tan(4pi-pi/6)=-tan(pi/6)=-1/sqrt3, or, -sqrt3/3tan(236π)=tan(4ππ6)=tan(π6)=13,or,33.