How do you find the exact value of tan (23pi/6)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Ratnaker Mehta Mar 13, 2018 -1/sqrt3, or, -sqrt3/3−1√3,or,−√33. Explanation: tan(23/6pi)=tan{(24-1)/6pi}=tan{(24/6-1/6)pi}tan(236π)=tan{24−16π}=tan{(246−16)π}, =tan(4pi-pi/6)=tan(4π−π6). Since, (4pi-pi/6)(4π−π6) lies in the fourth quadrant, where, tan is -ve, we get, tan(23/6pi)=tan(4pi-pi/6)=-tan(pi/6)=-1/sqrt3, or, -sqrt3/3tan(236π)=tan(4π−π6)=−tan(π6)=−1√3,or,−√33. Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ140∘? How do you find the value of cot 300^@cot300∘? What is the value of sin -45^@sin−45∘? How do you find the trigonometric functions of values that are greater than 360^@360∘? How do you use the reference angles to find sin210cos330-tan 135sin210cos330−tan135? How do you know if sin 30 = sin 150sin30=sin150? How do you show that (costheta)(sectheta) = 1(cosθ)(secθ)=1 if theta=pi/4θ=π4? See all questions in Trigonometric Functions of Any Angle Impact of this question 5314 views around the world You can reuse this answer Creative Commons License