How do you find the exact value of tan((7pi)/12)?

1 Answer
May 22, 2016

tan((7pi)/12)=-(2+sqrt3)

Explanation:

tan((7pi)/12)=tan(pi-(5pi)/12)

= #-tan((5pi)/12)

= -tan((3pi)/12+(2pi)/12)

= -tan(pi/4+pi/6)

Now using tan(A+B)=(tanA+tanB)/(1-tanAtanB)

= -(tan(pi/4)+tan(pi/6))/(1-tan(pi/4)tan(pi/6)

= -(1+1/sqrt3)/(1-1xx1/sqrt3)

Multiplying numerator and denominator by sqrt3

= -(sqrt3+1)/(sqrt3-1)=-(sqrt3+1)^2/((sqrt3-1)(sqrt3+1))

= -(3+1+2sqrt3)/(3-1)=-(2+sqrt3)