How do you find the exact value of tan(sin^-1(0.1))?

1 Answer
Apr 13, 2017

1/(3sqrt(11))

Explanation:

Let theta=sin^(-1)(0.1) Rightarrow sin(theta)=0.1=1/10=("Opposite")/("Hypotenuse")

Let ("Opposite")=1 and ("Hypotenuse")=10.

By Pythagorean Theorem,

("Adjacent")=sqrt(10^2-1^2)=sqrt(99)=3sqrt(11)

Hence,

tan(sin^(-1)(0.1))=tan theta=("Opposite")/("Adjacent")=1/(3sqrt(11))

I hope that this was clear.