How do you find the first and second derivative of ln(lnx^2)ln(lnx2)?

1 Answer
Aug 18, 2016

(1) : dy/dx=1/(xlnx)(1):dydx=1xlnx.

(2) : (d^2y)/dx^2=-(1+lnx)/(x^2(lnx)^2)(2):d2ydx2=1+lnxx2(lnx)2.

Explanation:

Let y=ln(lnx^2)y=ln(lnx2)

Using the well-known Rules of Log. Fun., we have,

y=ln(2lnx)=ln2+ln(lnx)y=ln(2lnx)=ln2+ln(lnx)

By the Chain Rule, then,

dy/dx=d/dx(ln2)+d/dx{ln(lnx)}dydx=ddx(ln2)+ddx{ln(lnx)}

=0+1/lnx*d/dx(lnx)=0+1lnxddx(lnx)

:. dy/dx=1/lnx*1/x=1/(xlnx).

Before proceeding further for the 2^(nd) Derivative (d^2y)/dx^2, let us recall that d/dt(1/t)=-1/t^2. Hence,

(d^2y)/dx^2=d/dx(dy/dx)=d/dx{1/(xlnx)}

=-1/((xlnx)^2)*d/dx{xlnx}

=-1/(x^2(lnx)^2){x*d/dx(lnx)+(lnx)*d/dx(x)}

=-1/(x^2(lnx)^2){x*1/x+(lnx)(1)}

:. (d^2y)/dx^2=-(1+lnx)/(x^2(lnx)^2).

Spread the Joy of Maths.!