How do you find the fourth roots of i?

1 Answer
Jan 24, 2017

Fourth roots of i are 0.9239+0.3827i,
-0.3827+0.9239i,
-0.9239-0.3827i and
+0.3827-0.9239i

Explanation:

We can use the De Moivre's Theorem, according to which

If z=re^(itheta)=r(costheta+isintheta)

then z^n=r^n e^(ixxntheta)=r(cosntheta+isinntheta)

As i=cos(pi/2)+isin(pi/2) can be written as i=cos(2npi+pi/2)+isin(2npi+pi/2)

root(4)i=i^(1/4)=cos((2npi)/4+pi/8)+isin((2npi)/4+pi/8) or

= cos((npi)/2+pi/8)+isin((npi)/2+pi/8)

Note that n=0,1,2,3 and after n=3, it will repeat.

This gives us four roots of i, which are

cos(pi/8)+isin(pi/8),

cos(pi/2+pi/8)+isin(pi/2+pi/8)=-sin(pi/8)+icos(pi/8)

cos(pi+pi/8)+isin(pi+pi/8)=-cos(pi/8)-isin(pi/8)

and cos((3pi)/2+pi/8)+isin((3pi)/2+pi/8)=sin(pi/8)-icos(pi/8)

and to get exact values we can use sin(pi/8)=sqrt(2-sqrt2)/2=0.3827 and cos(pi/8)=sqrt(2+sqrt2)/2=0.9239

Hence, fourth roots of i are 0.9239+0.3827i, -0.3827+0.9239i, -0.9239-0.3827i and +0.3827-0.9239i