How do you find the indefinite integral of int 1/(1+sqrt(2x))11+2x?

1 Answer
Nov 19, 2016

The answer is (1+sqrt(2x))-ln(1+sqrt(2x))+C(1+2x)ln(1+2x)+C

Explanation:

We do this integral by substitution

Let u=1+sqrt(2)sqrtxu=1+2x

sqrtx=(u-1)/sqrt2x=u12

Then, du=sqrt2*dx/(2sqrtx)=dx/(sqrt2sqrtx)du=2dx2x=dx2x

dx=sqrt2du*sqrtx=sqrt2*du*(u-1)/sqrt2dx=2dux=2duu12

dx=(u-1)dudx=(u1)du

Therefore,

intdx/(1+sqrt()2x)=int((u-1)du)/udx1+2x=(u1)duu

=int(1-1/u)du=u-lnu=(11u)du=ulnu

intdx/(1+sqrt()2x)=(1+sqrt(2x))-ln(1+sqrt(2x))+Cdx1+2x=(1+2x)ln(1+2x)+C