How do you find the indefinite integral of #int (4/(3t^2)+7/(2t))dt#? Calculus Introduction to Integration Integrals of Polynomial functions 1 Answer Shwetank Mauria Feb 25, 2017 #int(4/(3t^2)+7/(2t))dt=-4/(3t)+7/2lnt+c# Explanation: As #intt^ndt=t^(n+1)/(n+1)+c#, but for #n=-1#, #intt^(-1)dt=int(dt)/t=lnt# #int(4/(3t^2)+7/(2t))dt# = #int(4/3t^(-2)+7/2t^(-1))dt# = #4/3t^(-1)/(-1)+7/2lnt+c# = #-4/(3t)+7/2lnt+c# Answer link Related questions How do you evaluate the integral #intx^3+4x^2+5 dx#? How do you evaluate the integral #int(1+x)^2 dx#? How do you evaluate the integral #int8x+3 dx#? How do you evaluate the integral #intx^10-6x^5+2x^3 dx#? What is the integral of a constant? What is the antiderivative of the distance function? What is the integral of #|x|#? What is the integral of #3x#? What is the integral of #4x^3#? What is the integral of #sqrt(1-x^2)#? See all questions in Integrals of Polynomial functions Impact of this question 4948 views around the world You can reuse this answer Creative Commons License