How do you find the indefinite integral of #int (4sinx)/(3tanx)dx#? Calculus Introduction to Integration Integrals of Polynomial functions 1 Answer Narad T. · Jim H Dec 7, 2016 The answer is #=4/3sinx+C# Explanation: We use #tanx=sinx/cosx# #(4sinx)/(3tanx)# #=(4sinx)/(3sinx/cosx)# #=4/3cosx# So, #int(4tanxdx)/(3cosx)=4/3intcosxdx# #=4/3sinx+C# Answer link Related questions How do you evaluate the integral #intx^3+4x^2+5 dx#? How do you evaluate the integral #int(1+x)^2 dx#? How do you evaluate the integral #int8x+3 dx#? How do you evaluate the integral #intx^10-6x^5+2x^3 dx#? What is the integral of a constant? What is the antiderivative of the distance function? What is the integral of #|x|#? What is the integral of #3x#? What is the integral of #4x^3#? What is the integral of #sqrt(1-x^2)#? See all questions in Integrals of Polynomial functions Impact of this question 3018 views around the world You can reuse this answer Creative Commons License