How do you find the indefinite integral of #int (5sqrty-3/sqrty)dy#? Calculus Introduction to Integration Integrals of Polynomial functions 1 Answer Ratnaker Mehta Aug 31, 2016 #2/3y^(1/2)(5y-9)+C#, or, #2/3sqrty(5y-9)+C#. Explanation: Suppose that, #I=int(5sqrty-3/sqrty)dy=5inty^(1/2)dy-3inty^-(1/2)dy#. Since. #intx^n dx=x^(n+1)/(n+1), n!=-1#, we have, #I=5y^(1/2+1)/(1+1/2)-3y^(-1/2+1)/(-1/2+1)# #=10/3y^(3/2)-6y^(1/2)#. #=2/3y^(1/2)(5y-9)+C#, or, #=2/3sqrty(5y-9)+C#. Answer link Related questions How do you evaluate the integral #intx^3+4x^2+5 dx#? How do you evaluate the integral #int(1+x)^2 dx#? How do you evaluate the integral #int8x+3 dx#? How do you evaluate the integral #intx^10-6x^5+2x^3 dx#? What is the integral of a constant? What is the antiderivative of the distance function? What is the integral of #|x|#? What is the integral of #3x#? What is the integral of #4x^3#? What is the integral of #sqrt(1-x^2)#? See all questions in Integrals of Polynomial functions Impact of this question 1584 views around the world You can reuse this answer Creative Commons License