How do you find the inflection point of a logistic function?
1 Answer
The answer is
To solve this, we solve it like any other inflection point; we find where the second derivative is zero.
#P(t)=K/(1+Ae^(-kt))#
#=K(1+Ae^(-kt))^(-1)#
#P'(t)=-K(1+Ae^(-kt))^(-2)(-Ake^(-kt))# power chain rule
#P''(t)=2K(1+Ae^(-kt))^(-3)(-Ake^(-kt))^2-K(1+Ae^(-kt))^(-2)(Ak^2e^(-kt))# product and chain rule
Now we solve:
#2K(1+Ae^(-kt))^(-3)(-Ake^(-kt))^2-K(1+Ae^(-kt))^(-2)(Ak^2e^(-kt))=0#
#2(1+Ae^(-kt))^(-1)(-Ake^(-kt))^2-(Ak^2e^(-kt))=0# cancel
#2(1+Ae^(-kt))^(-1)(Ake^(-kt))^2-k(Ake^(-kt))=0# factor out
#2(1+Ae^(-kt))^(-1)(Ake^(-kt))-k=0# cancel
#2(1+Ae^(-kt))^(-1)(Ake^(-kt))=k#
#2Ake^(-kt)=k(1+Ae^(-kt))# cancel
#2Ae^(-kt)=1+Ae^(-kt)#
#2Ae^(-kt)-Ae^(-kt)=1#
#Ae^(-kt)=1#
#e^(-kt)=1/A#
#-kt=-lnA# log rules
#t=(lnA)/k#
This gives us
#P((lnA)/k)=K/(1+Ae^(-k(lnA)/k))#
#=K/(1+Ae^(-(lnA)))# log rules
#=K/(1+A/A)#
#=K/(1+1)#
#=K/2#
It's a lot of algebra, so be very careful with factoring, cancelling, and negative signs.