How do you find the integral 1/sqrt(1+sqrt(1+x^2))?

1 Answer
May 13, 2015

This is hard...

int1/sqrt(1+sqrt(1+x^2))dx

We need to delete all this square !!

For this let's :

u = sqrt(1+x^2)

x = sqrt(u^2-1)

du = x/sqrt(1+x^2)dx

dx=sqrt(1+x^2)/xdu

Integral become :

intsqrt(1+x^2)/(x*sqrt(1+sqrt(1+x^2)))du

intu/(sqrt(u^2-1)*sqrt(u+1))du

Multiply numerator and denominator bysqrt(u-1) and don't forget that (u+1)(u-1) = u^2-1 so we have :

(usqrt(u-1))/(u^2-1)

Let's w = sqrt(u-1)

dw = 1/(2sqrt(u-1))du

du = 2sqrt(u-1)dw

2int(usqrt(u-1))/(u^2-1)sqrt(u-1)dw

w^2+1=u

(w^2+1)^2=u^2

2int((w^2+1)w^2)/((w^2+1)^2-1)dw

2int(w^4+w^2)/(w^4+2w^2)dw

2int(w^2(w^2+1))/(w^2(w^2+2))dw

2int(w^2+1)/(w^2+2)dw

2int(w^2+2-1)/(w^2+2)dw

2int1dw-2int1/(w^2+2)dw

2int1dw-int1/(1/2w^2+1)dw

Let's t =1/sqrt(2)w

t^2=1/2w^2

dt = 1/sqrt(2)dw

[2w]- sqrt(2)int1/(t^2+1)dt

[2w]-[sqrt(2)arctan(t)]+C

Substitute back...

[2w]-[sqrt(2)arctan(1/sqrt(2)w)]+C

[2sqrt(u-1)]-[sqrt(2)arctan(1/sqrt(2)sqrt(u-1))]+C

[2sqrt(sqrt(x^2+1)-1)]-[sqrt(2)arctan(1/sqrt(2)sqrt(sqrt(x^2+1)-1))]+C