This is hard...
int1/sqrt(1+sqrt(1+x^2))dx
We need to delete all this square !!
For this let's :
u = sqrt(1+x^2)
x = sqrt(u^2-1)
du = x/sqrt(1+x^2)dx
dx=sqrt(1+x^2)/xdu
Integral become :
intsqrt(1+x^2)/(x*sqrt(1+sqrt(1+x^2)))du
intu/(sqrt(u^2-1)*sqrt(u+1))du
Multiply numerator and denominator bysqrt(u-1) and don't forget that (u+1)(u-1) = u^2-1 so we have :
(usqrt(u-1))/(u^2-1)
Let's w = sqrt(u-1)
dw = 1/(2sqrt(u-1))du
du = 2sqrt(u-1)dw
2int(usqrt(u-1))/(u^2-1)sqrt(u-1)dw
w^2+1=u
(w^2+1)^2=u^2
2int((w^2+1)w^2)/((w^2+1)^2-1)dw
2int(w^4+w^2)/(w^4+2w^2)dw
2int(w^2(w^2+1))/(w^2(w^2+2))dw
2int(w^2+1)/(w^2+2)dw
2int(w^2+2-1)/(w^2+2)dw
2int1dw-2int1/(w^2+2)dw
2int1dw-int1/(1/2w^2+1)dw
Let's t =1/sqrt(2)w
t^2=1/2w^2
dt = 1/sqrt(2)dw
[2w]- sqrt(2)int1/(t^2+1)dt
[2w]-[sqrt(2)arctan(t)]+C
Substitute back...
[2w]-[sqrt(2)arctan(1/sqrt(2)w)]+C
[2sqrt(u-1)]-[sqrt(2)arctan(1/sqrt(2)sqrt(u-1))]+C
[2sqrt(sqrt(x^2+1)-1)]-[sqrt(2)arctan(1/sqrt(2)sqrt(sqrt(x^2+1)-1))]+C