How do you find the integral from 0 to 2 of xe^(2x) dx? Calculus Techniques of Integration Integration by Parts 1 Answer Equivirial Jun 6, 2015 \int_0^2xe^{2x}dx=3/4e^4+1/4 Use integration by parts \int u dv=uv-int vdu Let u=x, \implies du=dx Let dv=e^{2x}dx, \implies v=1/2e^{2x} Substitute v and u into the top expression \int_0^2xe^{2x}dx=[x/2e^{2x}]_0^2 -int_0^2 1/2e^{2x}dx \int_0^2xe^{2x}dx=(e^4-0)-[1/4e^{2x}]_0^2 \int_0^2xe^{2x}dx=3/4e^4+1/4 Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 9484 views around the world You can reuse this answer Creative Commons License