How do you find the integral from 0 to 2 of xe^(2x) dx?

1 Answer
Jun 6, 2015

\int_0^2xe^{2x}dx=3/4e^4+1/4

Use integration by parts

\int u dv=uv-int vdu

Let u=x, \implies du=dx

Let dv=e^{2x}dx, \implies v=1/2e^{2x}

Substitute v and u into the top expression

\int_0^2xe^{2x}dx=[x/2e^{2x}]_0^2 -int_0^2 1/2e^{2x}dx

\int_0^2xe^{2x}dx=(e^4-0)-[1/4e^{2x}]_0^2

\int_0^2xe^{2x}dx=3/4e^4+1/4