How do you find the integral ln(x^2+x+1)ln(x2+x+1)?

1 Answer
Apr 10, 2018

xln(x^2+x+1)-x-(x+1/2)-lncostan^-1(2/sqrt(3)(x+1/2))+sqrt3tan^-1(2/sqrt(3)(x+1/2))+Cxln(x2+x+1)x(x+12)lncostan1(23(x+12))+3tan1(23(x+12))+C

Explanation:

intln(x^2+x+1)dxln(x2+x+1)dx

apply Integration by Parts

u=ln(x^2+x+1)u=ln(x2+x+1)

du=(2x+1)/(x^2+x+1)dxdu=2x+1x2+x+1dx

dv=dxdv=dx

v=xv=x

intln(x^2+x+1)dx=xln(x^2+x+1)-int(x(2x+1))/(x^2+x+1)dxln(x2+x+1)dx=xln(x2+x+1)x(2x+1)x2+x+1dx
rarr(1)(1)

Let I=int(x(2x+1))/(x^2+x+1)dx=I=x(2x+1)x2+x+1dx=

simplify

int(2x^2+x)/(x^2+x+1)dx2x2+xx2+x+1dx=int(x^2+x+1)/(x^2+x+1)dx+int(x^2-1)/(x^2+x+1)dxx2+x+1x2+x+1dx+x21x2+x+1dx

=x+int(x^2-1)/(x^2+x+1)dx=x+x21x2+x+1dx

let r=int(x^2-1)/(x^2+x+1)dxr=x21x2+x+1dx

completing the square of the denominator :
r=int(x^2-1)/((x+1/2)^2+3/4)dxr=x21(x+12)2+34dx

apply trigonometric substitution

x+1/2=sqrt(3)/2tanthetax+12=32tanθ
dx=sqrt(3)/2sec^2theta*d(theta)dx=32sec2θd(θ)
x^2=3/4tan^2theta-sqrt(3)/2tantheta+1/4x2=34tan2θ32tanθ+14

substitute

int(x^2-1)/((x+1/2)^2+3/4)dx=int((3/4tan^2theta-sqrt(3)/2tantheta+1/4)-1)/(3/4tan^2theta+3/4)sqrt(3)/2sec^2thetad(theta)x21(x+12)2+34dx=(34tan2θ32tanθ+14)134tan2θ+3432sec2θd(θ)

simplify where tan^2theta+1=sec^2thetatan2θ+1=sec2θ

4/3*sqrt(3)/2int(3/4tan^2theta-sqrt(3)/2tantheta-3/4)d(theta)4332(34tan2θ32tanθ34)d(θ)

simplify again using the relation tan^2theta+1=sec^2thetatan2θ+1=sec2θ

2/sqrt3int(3/4sec^2theta-sqrt3/2tantheta-3/2)d(theta)23(34sec2θ32tanθ32)d(θ)=sqrt3/2tantheta+lncostheta-sqrt3theta+C32tanθ+lncosθ3θ+C

reverse the trigonometric substitution

theta=tan^-1(2/sqrt(3)(x+1/2))θ=tan1(23(x+12))

so,
r=int(x^2-1)/(x^2+x+1)dxr=x21x2+x+1dx=(x+1/2)+lncostan^-1(2/sqrt(3)(x+1/2))-sqrt3tan^-1(2/sqrt(3)(x+1/2))+C(x+12)+lncostan1(23(x+12))3tan1(23(x+12))+C

substituting in II:

I=x+(x+1/2)+lncostan^-1(2/sqrt(3)(x+1/2))-sqrt3tan^-1(2/sqrt(3)(x+1/2))+CI=x+(x+12)+lncostan1(23(x+12))3tan1(23(x+12))+C

and substituting with the value of I in (1)

your final integration result will be:

intln(x^2+x+1)dxln(x2+x+1)dx=xln(x^2+x+1)-x-(x+1/2)-lncostan^-1(2/sqrt(3)(x+1/2))+sqrt3tan^-1(2/sqrt(3)(x+1/2))+Cxln(x2+x+1)x(x+12)lncostan1(23(x+12))+3tan1(23(x+12))+C