How do you find the integral ln(x)/sqrtx?

1 Answer
Aug 28, 2015

int (ln(x))/sqrt(x)\ dx=2sqrt(x)ln(x)-4sqrt(x)+C

Explanation:

Use integration-by-parts. Let u=ln(x) so that du=1/x\ dx and dv=1/sqrt(x)\ dx=x^{-1/2}\ dx so that v=2x^{1/2}=2sqrt(x).

The integration-by-parts formula can be written in abstract form as: int u\ dv=uv-int v\ du.

For this problem, this becomes:

int (ln(x))/sqrt(x)\ dx=2sqrt(x)ln(x)-int 2/sqrt(x)\ dx

=2sqrt(x)ln(x)-int 2x^{-1/2}\ dx

=2sqrt(x)ln(x)-4x^{1/2}+C

=2sqrt(x)ln(x)-4sqrt(x)+C