How do you find the integral ln(x)/(x^2)? Calculus Techniques of Integration Integration by Parts 1 Answer bp Sep 7, 2015 -lnx /x -1/x +C Explanation: Integration by parts can be done in this case, int (ln x)/x^2 dx =int lnx*d/dx(-1/x) dx= -lnx /x -int d/dx (lnx)*(-1)/x dx+C= -lnx /x+int 1/x^2 dx +C= -lnx /x -1/x +C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 2600 views around the world You can reuse this answer Creative Commons License