Here,
I=int(lnx)^2/x^3dx
=int(lnx)^2*x^(-3)dx
"Using "color(blue)"Integration by Parts".
I=(lnx)^2intx^(-3)dx-int(d/(dx)((lnx)^2)intx^(-3)dx)dx
=(lnx)^2(x^(-2)/(-2))-int2(lnx)*1/x(x^(-2)/(-2))dx
=-(lnx)^2/(2x^2)+int(lnx)(x^(-3))dx
Again, "using "color(blue)"Integration by Parts".
I=-(lnx)^2/(2x^2)+[lnx(x^(-2)/(-2))-int1/x(x^(-2)/(-2))dx]
=-(lnx)^2/(2x^2)-(lnx)/(2x^2)+1/2intx^(-3)dx
=-(lnx)^2/(2x^2)-(lnx)/(2x^2)+1/2(x^(-2)/(-2))+c
=-(lnx)^2/(2x^2)-(lnx)/(2x^2)-1/(4x^2)+c
I=-1/(4x^2)[2(lnx)^2+lnx+1]+c