How do you find the integral (lnx)^2 / x^3?

1 Answer
Apr 29, 2018

I=-1/(4x^2)[2(lnx)^2+lnx+1]+c

Explanation:

Here,

I=int(lnx)^2/x^3dx

=int(lnx)^2*x^(-3)dx

"Using "color(blue)"Integration by Parts".

I=(lnx)^2intx^(-3)dx-int(d/(dx)((lnx)^2)intx^(-3)dx)dx

=(lnx)^2(x^(-2)/(-2))-int2(lnx)*1/x(x^(-2)/(-2))dx

=-(lnx)^2/(2x^2)+int(lnx)(x^(-3))dx

Again, "using "color(blue)"Integration by Parts".

I=-(lnx)^2/(2x^2)+[lnx(x^(-2)/(-2))-int1/x(x^(-2)/(-2))dx]

=-(lnx)^2/(2x^2)-(lnx)/(2x^2)+1/2intx^(-3)dx

=-(lnx)^2/(2x^2)-(lnx)/(2x^2)+1/2(x^(-2)/(-2))+c

=-(lnx)^2/(2x^2)-(lnx)/(2x^2)-1/(4x^2)+c

I=-1/(4x^2)[2(lnx)^2+lnx+1]+c